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Application of SCF Perturbation Theory to 
Molecular Calculations 
David P. Santry* 

Lehrstuhl B ffir Anorganische Chemie, Technische Universitdt, Pockelstr. 4, 
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A method for solving Roothaan's molecular orbital equations by means of SCF pertur- 
bation theory is presented. An estimate of the accuracy of the third order expansion 
is made for the CNDO/2 approximation from a comparison of the results from direct 
calculations. It is found that the third order theory is sufficiently accurate for 
quantitative studies. 
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1. Introduction 

A method is presented here for the calculation of the density matrix and electronic 
energy of a molecule in terms of a localized basis set of bond and lone-pair orbitals. All 
electrons in a closed-shell molecule are assigned in pairs to molecular orbitals localized in 
either bond or lone-pair directions. Interactions between these orbitals are then introduced 
by means of molecular-orbital based perturbation theory. 

This approach has already been applied by Coulson, Redei and Stocker [1,2] to the 
theoretical study of the electronic structures of certain semi-conductors, and by several 
other workers [3-5] to the investigation of hydrocarbon molecules. 

The above studies are all based on the Htickel approximate molecular orbital method 
and therefore avoid the problem of making the perturbation self consistent. The method 
is extended in the present treatment by calculating all inter bond and lone-pair interactions 
by means of SCF (self consistent field) perturbation theory [6]. The underlying theory is 
formally very similar to that developed for the calculation of inter-molecular interactions 
within a molecular aggregate [7, 8]. The desired formalism may be obtained from the 
aggregate theory by the substitution of localized bond and lone-pair orbitals for the mole- 
cular orbitals localized on the molecules of the aggregate. 

The relative ease of solution of the Htickel perturbation equations was an attractive 
feature of the perturbation approach before the wide-spread availability of computers. 
The extension of the perturbation theory to the SCF level complicates the solution of the 
equations to the point where some computational aid is necessary. Thus, the only reason 
remaining for the adoption of the perturbation approach, in the present application, is 
the added insight into the electronic structure of molecules it affords. This may be 
illustrated, for example, by a discussion of the effect of electron delocalization on the 
long-range nuclear spin coupling constants of hydrocarbon molecules [9]. 
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2. Theory 

The objective is the solution of Roothaans [10] equation, 

FC --- SCE, (1) 

for a molecule through the calculation of the density matrix, 

OCC 
Puv = 2 ~ C#iCvi , (2) 

i 

by means of SCF perturbation theory. All of the symbols in the above equations have 
their usual meanings. The valence basis set chosen for the solution of Eq. (7) consists of a 
ls orbital on each proton and four hybrid orbitals on all other atoms. These hybrid orbitals 
are directed along bond or lone-pair directions. Furthermore, it will be assumed that the 
basis set is ordered so that orbitals associated with a given bond are adjacent; all lone-pair 
orbitals are listed together at the end. 

The Fock, overlap and density matrices are naturally partitioned into sub-matrices by 
the ordering of the basis set in this manner. Assuming there are two orbitals associated 
with each bond and one with each lone-pair, there will be 2 x 2 intra and inter-bond, 
2 x 1 inter-bond lone-pair and 1 x 1 intra lone-pair submatrices. Under the CNDO 
approximation [11], for example, the intrabond Fock sub-matrix, enF,  for the Rth bond 
is given by 

R R r m m  = Umm + 1(1  - -  RRpmm)"/~a + ~ (Q~ - Z~)')'a~ ( 3 )  
t3 

where, assuming two hybrids per bond, m = 1 or 2, and the ruth orbital is centered on the 
ath atom. nRPmm is the corresponding element from the Rth intra-bond density sub- 
matrix. 7a~ is a CNDO average Coulomb integral, Z~ the effective nuclear charge of the 
/3th atom and Q~ the total electron density associated with the same atom. 

06 = ~ '  ~ '  TTpnn (4) 
T n 

The summations over T and n are restricted to include only those bonds and orbitals, 
respectively, associated with the/3th atom. 

The off-diagonal elements of RRF are given by 

1 RRD _ RRF12 =RRHt2 -- ~" --lZrat3 (5) 

where the Rth bond connects atoms a and/3. RRH12 is given, under the CNDO/2 approxi- 
mation [11], by the product of the overlap integral between the bond orbitals and the 
appropriate scaling factor. 

The Fock sub-matrix, teSF, between bondsR and S is given by 

RSFm n RSHm n 1RSp _ = - ~ mnT~,  (6) 

where m, n = 1 or 2 and orbitals m and n are centered on atoms ~ and/3, respectively. 
Various possible contributions to RSH are discussed and illustrated in Ref. 5. As the overlap 
matrix is assumed to be diagonal under the CNDO/2 approximation it does not require 

discussion. 
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3. Choice of the Zero Order Equations 

It is important to realize that a certain degree of freedom exists both in the selection of 

elements and from F to be included at the zero order and in the incorporation of the 
remaining elements into the perturbation scheme. All that is required, for the present pur- 
pose, is that all zero order off-diagonal sub-matrices be zero. 

RRF(~ could be defined as the operator for a hypothetically isolated bond or lone-pair 
through the neglect of all contributions, electrostatic under the CNDO/2 approximation, from 

electrons in other bonds. These could then be re-introduced as a contribution to the first 
order Fock sub-matrix, RRF(1). Alternatively, the inter-bond electrostatic contribution 
can be retained in RRF(~ so that the zero order equation treats the molecule as a collec- 
tion of mutually polarizing but otherwise independent bonds. There is little to choose 
between these two alternative starting points in terms of the computational effort required 
to solve the resultant equations. The advantage of the first choice is that all of  the intra- 
bond and intra lone-pair Fock sub-matrices are independent, so that all zero order equations 
can be solved separately. The inclusion of the neglected inter bond contributions to the 
intra-bond Fock submatfices requires the solution of coupled first order equations. The 
situation is reversed in the case of the second definition. The inclusion of the inter-bond 
terms at the zero order requires that the resultant equations be solved as a group of 
coupled equations. On the other hand, under this definition RRFO) iS zero and there are 

no first order equations to be solved. Also, there appears to be little to choose between the 
two definitions from the point of view of accuracy. Calculations, for ethyl amine, based on 

the two different choices of perturbation yielded virtually identical results after the second 
order. 

All of the calculations reported here are based on the second definition of RRF(~ The 
zero order Fock submatrices are given by 

and 

RRIT(O)  = V m  m + 21_(1 _. R R p ( O )  "t,v + mgl'l ~ lq2m J l (R~ 

RRI~,(O) 1 R R D ( O ) ^ ,  
- - t 2  = R R H 1 2  ~ ~12 ~'a/3 

all atoms 
(Q(O) _ Zt3)Ta ~ (7) 

(8) 
As mentioned above, all of the zero order intra-bond equations have to be solved as coupled 
equations since each depends on the density sub-matrix, rrp(0), through Q~O), of them all. 
All elements of H so far neglected are included as a first order contribution. 

RRFO ) = 0 (9) 

This follows, only under the CNDO approximation, because RRH0) is zero, and the inter- 
bond contributions to eRFhave been included at the zero order. The first order inter-bond 
and lone pair Fock submatrices are given by 

R S p ( 1 )  = R S H m  n ! R 8 o ( 1 )  
- - ran  - -  2 "~ m n  Tce~ (1 0)  

For orders, x, greater than 1 

R R p ( x )  _ l R R p ( x )  ,v 4- 
--ram = 2 (11) 

RS p(x)__ mn = -- �89 RSP(~) Te~ (12) 

where R can equal S i fm does not equal n. 
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The second and higher orders in the intra-bond and lone pair submatrices are non-zero 
because there are constant, non iterative, contributions to p(x) arising from products of 
pairs of lower order contributions to the occupied molecular orbitats [7, 8]. 

The SCF perturbation equations are solved for the density sub-matrices by the method 
outlined in Ref. [7]. The full overlap dependent equations may be solved by the method 
outlined in Ref. [8]. Once the density submatrices have all been calculated, the molecular 
electronic energy, W, may be calculated from the equation 

W= �89 E ~ P,~,(Huv +Fuu) (13) 
.u v 

The present approach does not provide a means for calculating either the molecular orbi- 
tals or the orbital energies. These can be calculated [ 12], under certain circumstances, on 
completion of the main calculation. 

Although the above discussion is limited to the use of individual bond orbitals as zero 
order basis functions, there is no reason why, with obvious extensions to the theory, 
molecular orbitals associated with molecular fragments, for example, a methyl group, 
could not be used for the same purpose. The theory in this form may provide a useful 
means for the study of group interactions within molecules. 

4. Application of the Perturbation Method 

The perturbation expansion, taken to the third order, has been applied tO calculation 
of the density matrices and molecular energies of propane, ethanol, ethylamine and ethyl 
fluoride. The results from these calculations are compared here against those from direct 
calculations to provide an estimate of the accuracy of the third order expansion. 
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Fig. 1. Molecular conformation and atomic numbering scheme for propane 
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Table 1. Atomic populations calculated for propane, Fig. l, directly and by 
means of SCF perturbation theory. Q~2), for example, is the second order 
contribution to the total electron population of atom t3. Q(1) is zero under 
the CNDO approximation and the chosen perturbation 

Atom 1 5 7 9 10 

Q(o) 0 . 98309  0.983775 0 .98527 4.051091 4.02737 
Q(2) 0 .01241  0 .01443  0 .01634 -0.03669 -0.03782 
Q(3) 0 . 0 0 1 3 7  0 .00523  0.00499 -0.00349 -0.01893 
TotN 0 .99696  1 .00344  1 .00661  4 .01091  3.97063 
Direct 0 .99736 1 .00406  1 .00537  4 .008 04  3.9756 

The molecular configuration and atomic numbering scheme selected for propane for the 
purpose of these calculations is shown in Fig. 1. All C-H and C-C bond lengths are 1.091 
and 1.536 A, respectively, and all bond angles are tetrahedral. The basis set for the pertur- 
bation calculation consists of Is orbitals on each proton and four sp 3 hybrids on each 
carbon. The conventional CNDO basis set was retained for the direct calculations. 

The total electron populations for all independent propane atoms are listed by order 
in Table 1. These data show the perturbation series to be convergent but the level of 
convergence not to be uniform over the various atoms. Comparison of the atomic popula- 
tions from the perturbation and direct calculations, also listed in Table 1, shows the error 
to be the least for atom 1 and the greatest for the bridging carbon, atom 10. The reason 
for this variation in the convergence of the perturbation expansion can be understood in 
terms of a discussion given in Ref. [13], and brings to light an important feature of the 
perturbation approach. 

It has been shown [13, 14] that the transfer of electron density between the zero order 
localized units, here bond and lone-pair orbitals, is a second and higher order effect. Even 
at the second order the transferred charge is not calculated to a self consistent level, since 
it originates from the constant [7, 8],  non iterative, component of  P (2). The first step 
towards making this feature of the charge distribution self consistent is taken at the third 
order in the calculation of p(3). Thus even if the elements of the perturbative Hami l t on ian  

matrix are roughly equal, the level of convergence of the calculated charge densities may 
vary from atom to atom, simply because their routes to self consistency are different. 
Furthermore, it is not the strength of the perturbation alone that governs to which order 
the perturbation expansion should be taken. Clearly, for quantitatively acceptable results, 
the expansion must be taken to the second order, even for relatively weak perturbations, 
otherwise contributions from inter bond charge transfers will be excluded. 

The total energy of propane calculated both directly and by the perturbation expansion 
is given in Table 2. The difference between the two calculations is 0.00453 a.u. As this is 
appreciably larger than the theoretical barrier to the rotation of a methyl group, it would 
appear that the perturbation method is unsuitable for theoretical studies on molecular 
contbrmation. However, more extensive calculations showed this difference remains 
constant, to within 0.00002 a.u., throughout the entire rotation of a methyl group in 
propane. Thus the potential curves, Fig. 2, for the rotation of a methyl group from the 
direct and perturbational calculations are almost indistinguishable, except that from the 
latter calculation is displaced by 0.00453 a.u. Similar results have been reported from SCF 
perturbation calculations on hydrogen bonded dimers. 
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Fig. 2. Potential curves for the rotation of a methyl group in propane 

5. Results for Ethynol, Ethylamine and Ethylfluoride 

Certain of the inter bond interactions will get progressively stronger along the above 
series of molecules. The matrix element between two hybrid orbitals on the same atom, 
but different bonds, is directly proportional to the difference between the 2s and 2/) 
orbital energies of the atom in question [5]. Since this difference increases along the series 
C, N, 0 and F, these will be corresponding increases in the strength of the perturbation 
for molecules containing these atoms. It is of interest to determine whether these increases 
are sufficient to appreciably affect the convergence of the perturbation expansion. 

Table 2. Total molecular energies calculated directly and by means of SCF pertur- 
bation theory 

Molecule Et-CH3 Et-NH2 Et-OH Et-F 

Perturbation -27.49125 -31.24343 -37.24451 -45.78253 
Direct -27.49577 -31.24814 -37.25048 -45.78821 
Difference 0.00453 0.00471 0.00597 0.00568 
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The structural data necessary for calculations on C2HsNH2, C 2 H s OH and C2H s F were 
generated from those of  propane, Fig. 1, by the removal of  the appropriate protons and 

the substi tution o f  N, O and F, respectively, for C9; the atomic numbering scheme o f  
Fig. 1 was maintained. The sp 3 basis for the heavy atoms was retained. The tone pair 
orbitals o f  NH 2 and OH were directed along the tetrahedral directions of  the absent hydro-  
gens. In the case o f  F, the three lone pair orbitals were rotated out  of  these directions by 
60 ~ ' 
The molecular energies and total  atomic populations,  calculated both directly and by 
the per turbat ion method,  are listed in Tables 2 to 5. The total energy calculated by the 
per turbat ion expansion shows only a Night deterioration in the level of  convergence along 
the series. Surprisingly, the error reaches a maximum at Et -OH and a minimum at Et-NH2. 

There is a significant increase in the perturbative error in the atomic populat ions along the 
series of  molecules, but  the per turbat ion expansion is acceptably convergent for all mole- 

cules. The atomic populat ion of  F is particularly interesting in this regard. Although the 
second and third order contributions, Q ~.z) and Q~3), are of  the same sign and of  compar- 
able magnitude,  the final error is an order o f  magnitude smaller than Q(F 3). 

Table 3. Atomic populations calculated for ethytamine directly and by means of SCF perturbation 
theory (RNc = 1.474 and RNH = 1.0 A) 

Atom 1 2 6 7 9 10 11 

Q(o) 0.9076 0.98161 0.98252 0.98742 5.24100 3.96607 4.05824 
Q(2) 0.01389 0.01180 0.01368 0.01805 -0.02113 -0.05350 -0.02654 
Q(3) -0.00169 0.00192 0.00219 0.00829 -0.00289 -0.01346 -0.00289 
Tot~ 0.91926 0.99532 0.99840 1.01377 5.21698 3.89912 4.02882 
D~ect 0.92059 0.99531 0.99982 1.01264 5.21630 3.89880 4.02802 

Table 4. Atomic populations calculated for ethanol directly and by means of SCF perturbation theory 
(Rco = 1.428 A and ROH = 0.97) 

Atom 2 5 6 7 9 10 11 

Q(O) 0.97471 0.83241 0.98381 0.98932 6.28821 3.90924 4.05827 
Q(2) 0.00911 0.03913 0.00905 0.02296 -0.03683 -0.04938 -0.02612 
Q(3) 0.00223 -0.01592 -0.00344 0.01322 0.00772 -0.01956 0.00032 
Tot~ 0.98605 0.85562 0.98941 1.02549 6.25910 3.84030 4.03247 
Direct 0.98530 0.86530 0.98987 1.02484 6.25451 3.83821 4.03184 

TaMe 5. Atomic populations calculated for fluoroetbane directly and by means of SCF pertur- 
bation theory (RcF = 1.379 A) 

Atom 2 6 7 9 10 11 

Q(O) 0.96751 0.97756 0.97677 7.21756 3.84947 4.06685 
Q(2) 0.00929 0.00798 0.02087 -0.01211 -0.03211 -0.02409 
Q(3) 0.00178 -0.00645 0.01280 0.00535 -0.03111 0.00305 
Tot~ 0.97858 0.97909 1.01044 7.21081 3.78625 4.04582 
Dkect 0.97797 0.98126 1.01024 7.20862 3.78839 4.04534 
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6. Variable Hybridization Calculations for CH3 F 

The above calculations are all in terms of a basis set which includes sp 3 hybrid orbitals. 
Direct CNDO calculations are independent of the choice of hybridization since this corre- 
sponds to an orthogonal transformation of the atomic orbital basis set. The same would 
be true of the perturbation calculations if they were taken to a sufficiently high order. 
However, as the perturbation expansion is truncated after the first few terms, some depen- 
dence on hybridization is to be expected. This could, perhaps, be turned to advantage by 
choosing the hybridization parameters so as to reduce the strength of the perturbation, 
thereby improving the convergence. 

Preliminary calculations were made for CH3 F to investigate the effect of changes in 
hybridization on the convergence of the perturbation series. The sp 3 hybrids in the C-F 
bonds were replaced by hybrid orbitals of the type, 

Cos LEss + Sin XX2p, 

and the other hybrid orbitals changed to maintain orthogonality and to be consistent with 
the C 3 axis of symmetry. Calculations were repeated for a range of hybridization para- 
meters, X, for both C and F. Some of the results from these calculations, together with 
those obtained directly, are listed in Table 6. These data show that while some improve- 
ment can be effected in some matrix elements of P, it is largely at the expense of others; 
the overall improvement is small. This is largely because the limiting factor here is not the 
strength of the perturbation so much as the fact that certain routes to self consistency 
remain closed as long as the perturbation expansion is limited to the third order; the only 
way to improve the accuracy of the expansion is to take it to a higher order. 

7. Summary and Conclusions 

Molecular orbital calculations based on SCF perturbation theory have been reported 
for several molecules. The following conclusions have emerged from the results. 

Table 6. Charge densities calculated for fluoromethane directly and by means of SCF pertur- 
bation theory with variable hybridization. PPC and PPF are, respectively, the total electron 
densities in the q5 orbitals of carbon and fluorine 

Hybridization Parameters 
Xc, Xp 

Direct 60,60 60,58 63,58 

PIS,1S 0.9969 0.9963 0.9963 0.9949 
PIS,1S' -0.0347 -0.0295 -0.0297 -0.0308 
PIS,2Sc 0.5178 0.5189 0.5189 0.5175 
P1S,2SF 0.0022 0.0058 0.0048 0.0024 
P2Sc,2Sc 1.0402 1.0300 1.0289 1.0325 
P2Sc,2SF 0.1795 0.1679 0.1668 0.1732 
-P2s F,2SF 1.8411 1.8519 1.8577 1.8573 
PPC 2.7771 2.7860 2~.7811 2.7791 
PPF 5.3509 5.3432 5.3432 5.3464 
W (a.u.) -37.0935 -37.0905 -37.0898 -37.0904 
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1) The SCF perturbation method is sufficiently accurate when taken to the third order 

to make it a useful and interesting tool for the quantitative investigation of the 
electronic structure of molecules. 

2) The truncation point in the perturbation series is not governed by the strength 
perturbation alone. For example, even the weakest perturbation must be taken at 
least to the second order to allow for inter-bond charge transfer. 
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